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Vector coherent state theory of the non-compact 
orthosymplectic superalgebras: I. General theory 

C Quesnef 
Physique Nucleaire Theorique et Physique Mathimatique CP229, Universite Libre d e  
Bruxelles, Bd du  Triomphe, B1050 Bruxelles, Belgium 

Received 22 May 1990 

Abstract. Vector coherent states are  defined for the positive discrete series irreducible 
representations of the non-compact orthosymplectic superalgebras osp(  P / 2 N ,  R), where 
P = 2 M  or 2 M  + 1 .  An orthonormal Bargmann-Berezin basis, symmetry-adapted to  
o s p ( P / Z N , R )  ~ s o ( P ) O s p ( 2 N , R ) ~ s o ( P ) O u ( N ) ,  is constructed and  used to develop the 
K-matrix theory for o sp (P /ZN,  R). A general method is provided for determining the 
conditions of existence of star representations ( and  of grade star representations in the 
osp(2/2N,W) case),  and  the branching rule for their decomposition into a direct sum 
of s o ( P  ) O s p ( Z N ,  W )  irreducible representations. As a by-product,  i t  also enables the 
matrix elements of the o d d  generators between basis states of lowest-weight so(P)Ou( N )  
irreducible representations to be calculated in a straightforward way. 

1. Introduction 

Since their introduction (Deenen and Quesne 1984a, Rowe 1984), the vector coherent 
states (vcs), also called partially coherent states, have come to play an  increasingly 
important role in Lie algebra representation theory. Their combination with K-matrix 
theory indeed provides a simple systematic procedure for explicitly constructing the 
ladder irreducible representations (irreps) of an algebra g in bases symmetry-adapted 
to some maximal-rank subalgebra go (Hecht 1987, Rowe et a1 1988). 

In standard (generalized) coherent state (cs )  theory (Perelomov 1972, 1977, Gilmore 
1972, 1974), the irreps of a group G are induced from the one-dimensional irreps of 
a subgroup Go .  vcs theory arises as a natural extension of the latter when finite- 
dimensional vector irreps of Go are considered instead of one-dimensional irreps (Rowe 
et a1 1985a). vcs theory is also intimately connected with the Lie algebra contraction- 
expansion procedures and  with boson representations (Rosensteel and Rowe 1981, 
Deenen and  Quesne 1985, Quesne 1987). 

In K-matrix theory, the difficult determination of the vcs identity resolution integral 
form is replaced by an implicit definition of the vcs scalar product (Rowe 1984, Rowe 
er a1 1984, 1988, Deenen and  Quesne 1982, 1984b, 1985, Castaiios et a1 1985, Hecht 
1987). This is achieved by specifying an orthonormal basis with respect to such a scalar 
product. For this purpose, one starts from a basis of vector-valued functions, orthonor- 
mal with respect to a Bargmann scalar product (Bargmann 1961), and  hence connected 
with standard boson cs theory (Glauber 1963a, b);  then one maps the vector Bargmann 
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basis onto an orthonormal v c s  basis by means of a transformation K .  In determining 
the K matrix, full use is made of tensor calculus with respect to the subalgebra go. 
Finally, the explicit matrices of the generators of g are directly given in terms of the 
K-matrix elements. 

The basic role played by Lie algebra gradings in the vcs  construction has been 
recognized recently (Rowe et al 1988, Le Blanc and Rowe 1988), thereby making 
possible its extension to some non-semisimple Lie algebras (Quesne 1990b). Such 
gradings, which are fundamental to the Tits-Koecher-Kantor construction of finite- 
dimensional simple Lie algebras, can be generalized to Lie superalgebras to give a 
unified construction of both types of mathematical structures by using ternary algebras 
as building blocks (Bars and Gunaydin 1979). It is therefore obvious that the vcs  and 
K-matrix combined theory can be extended to Lie superalgebras without substantial 
modification (Le Blanc and Rowe 1989, 1990). The only significant change consists in 
replacing the Bargmann scalar product by a Bargmann-Berezin one (Berezin 1966), 
connected with boson-fermion cs theory (Ohnuki and Kashiwa 1978), because one 
now has to deal with functions depending on both complex and Grassmann variables. 

The purpose of the present series of papers is to develop the v c s  theory for 
the positive discrete series irreps of the non-compact orthosymplectic super- 
algebras osp(P/2N,R) (where P = 2 M  or 2 M + 1 )  in o s p ( P / 2 N , R ) 2 s o ( P ) O  
sp(2N, R) 2 s o ( P ) @  U( N )  bases, recently presented in a preliminary account (Quesne 
1990a). This new application of vcs  theory is of considerable practical interest because 
non-compact orthosymplectic superalgebras make their appearance in applications of 
supersymmetry to a lot of physical problems (see, e.g. de Crombrugghe and Rittenberg 
1983, Wegner 1983, Verbaarschot er al 1985, Gunaydin and Warner 1986, Schmitt 
er a1 1988, 1989). With the recent study of the highest-weight finite-dimensional irreps 
for the compact form of the orthosymplectic superalgebras (Le Blanc and Rowe 1990), 
the present work completes the review of the most important representations of this 
class of classical superalgebras. 

In this paper we present the general theory valid for all osp( P/ZN, R) superalgebras 
including the osp(2/2N, R) ones, which need special treatment. In the following paper 
(henceforth referred to as 11) (Quesne 1990d), we shall illustrate the general theory 
with some detailed examples corresponding to the cases P = 1,2 ,3  and 4. 

Sections 2-6 of the present paper mostly deal with the osp( P/2 N ,  R) superalgebras 
corresponding to P f 2. In section 2 ,  the definition of the osp( P/2N,  R) superalgebras 
and of their positive discrete series irreps is reviewed and the existence of a five- 
dimensional Z-graded structure with respect to the maximal compact even subalgebra 
s o ( P ) O u ( N )  is established. In section 3, the osp(P/2N,R) vcs  are introduced and 
shown to generalize the standard cs of the most degenerate positive discrete series 
irreps of osp(l /2N,  R) and osp(2/2N, R), recently studied by Balantekin et a1 (1988, 
1989). The vcs  representation of the osp(P/2N,R)  generators is also obtained. In 
section 4, an orthonormal vector Bargmann-Berezin basis, symmetry-adapted to 
osp(P/ZN, R) 3 so(P)Osp(2N,  R) 3 so (P)O u ( N ) ,  is constructed and its relation with 
boson-fermion cs is stressed. This basis is then used in the K-matrix theory of 
osp(P/ZN, R) developed in section 5.  Section 6 contains some general results for the 
reduced matrix elements of so( P)Ou( N )  irreducible tensors, whose evaluation is 
required for implementing K-matrix theory in practical cases, as is done in 11. Finally, 
section 7 emphasizes the differences occurring in the osp(2/2N, [w) case with respect 
to the general theory presented for the osp(P/2 N, R) superalgebras with P # 2 in the 
previous sections. 
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2. The osp(PI2N, 02) superalgebras and their positive discrete series irreps 

The non-compact osp( P / 2  N,  R) superalgebra ( P  = 2 M  or 2 M  + 1) is spanned by the 
operators 

.IAB = ( -1) '7q '7B ' \BA A,B=(0) ,*1 ,  . . . ,  * ( M + N )  (2.1) 

where 

if A = ( O ) , * l , .  . . ,* M 

i f  A = * ( M +  l ) ,  . . . ,* ( M +  hr) 

( 2 . 3 ~ )  

(2.36) 
77A = 

and 

if  A =  (O),*l , .  . . ,* M 
i f  A =  * ( M +  l ) ,  . . . , + ( M + N ) .  

( 2 . 5 ~ )  
(2.56) 

The range of indices A,  B in (2.1) and of index A in ( 2 . 3 ~ )  and ( 2 . 5 ~ )  includes 0 only 
for P = 2 M + 1 .  

To ensure that the even part of the superalgebra is go = so(P)Osp(2N,  R), one has 
to impose some adjoint conditions on the corresponding generators. We shall use 

Ait ,=-Ahn= l a b  AUh = -Aba = ( A l b ) - =  \ -h , - ,  

B ,  = B" = ( R , )  = '1,) --(, Cab = (ch")' = >2,,-h (2.6) 

a, b = 1 , .  . . M 

and 

to denote the s o ( P )  and sp(2N, R )  generators, respectively. The operators COh and E,' 
span the u ( M )  and u ( N )  subalgebras of s o ( P )  and sp(2N, R), respectively. For the 
generators of the odd part g i ,  we shall use the following notation: 

rat = M A )  G"' ='I-<, -,,-, Ht" = 1-u U+, J,' = A, - M - ,  

(2.8) 
K ,  = I" M+t  F '  = 'I" - M-,  a = 1 , .  . . , M  t = l , . .  , N .  

The operators B, ,  B" and K , ,  F ' ,  defined in (2.6) and (2.8), respectively, only exist 
for P = 2 M +  1. The supercommutators of the operators (2.6)-(2.8) are listed in the 
appendix. 

The adjoint operation in so(P)Osp(2N, R I  can be extended to an adjoint operation 
in osp(P/2N, iw) in two ways differing by a choice of sign (Scheunert et a1 1977): 

( F ' )  = F ,  = + K ,  (G" ' )  = G,,= A I , ,  (J,')' = *H,".  (2.9) 
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The adjoint conditions contained in (2.6), (2.7) and (2.9) may be written in a compact 
form as 

A A B  = (* l )T)~+r l~(A-B,-A)T.  (2.10) 

For P = 2, and only in this case, the adjoint operation in the Lie subalgebra can also 
be extended to a grade adjoint operation in the superalgebra (Scheunert er a1 1977). 
Hence, osp( P/2N,  R), P # 2, may have star but no grade star representations, while 
osp(2/2N, R) may have star and grade star representations, as well as representations 
which are both star and grade star (in either case, representations which are neither 
star nor grade star exist, of course). Up to the end of section 6, we shall restrict 
ourselves to P values different from 2, so that equations (2.9) and (2.10) will be valid 
and we shall only deal with star representations. 

When the upper signs are chosen in (2.9) and (2.10), the osp(2M/2N, R) (respec- 
tively, osp(2M + 1/2N, R)) generators can be realized in a super Fock space.9 (Gunay- 
din 1988, Gunaydin and Hyun 1988) as bilinear operators in Mn (respectively, ( M  t 
1)n)  pairs of fermion creation and annihilation operators a"', a = 1,2 , .  . . , M ,  
s = 1,2, . . . , n, (respectively, a = 1,2,  . . . , M + 1, s = 1,2,  . . . , n), and Nn pairs of boson 
creation and annihilation operators b:, , b", i = 1,2,  . . . , N, s = 1,2,  . , . , n, as follows: 

\ 

(2.11) 
S S I 

Here all the summations run over the range 1, .  . . , n, where n is an even integer, large 
enough to allow the most general positive discrete series irreps of osp(P/2N, R), as 
defined below, to be realized in the super Fock space. 

The weight generators of osp(P/2N, R) are those of so(P)Osp(2N,  R) or, 
equivalently, those of s o ( P ) O u ( N ) .  We choose to enumerate them in the order El', 
E*', . . . , E N w ,  Cl', C,', . . . , CMM.  From the supercommutation relations (A.l)-(A.4), 
it is then clear that the lowering generators are Anb, B", Cub ( a  > b ) ,  D", E,] ( i  > j ) ,  
F' ,  G"', and Ju', whereas the raising generators are Aib ,  E, ,  Cub ( a  < b ) ,  D i  , E,' ( i  < j ) ,  
K , ,  I", ,  and H,". 

In most physical applications, one is interested in the decomposition of the 
osp( P/2N,  R) irreps into irreps of the Lie subalgebra so(P)Osp(2N, Ri.  In the solution 
to this problem considered in the present series of papers, a central role is played by 
the maximal compact even subalgebra s o ( P ) O u (  N ) ,  henceforth referred to as the 
stability subalgebra of osp( P/2N,  R). We shall therefore consider the chain 

o sp (P /2N,R)~so(P)Osp(2N,R)=so(P)Ou(N) .  (2.12) 
This has to be contrasted with the chain osp( P/2 N, R) 2 U (  M /  N ) ,  considered by 
Gunaydin (1988) and Gunaydin and Hyun (1988), where u ( M / N )  is the maximal 
compact subsuperalgebra of osp(P/2N, R), generated by the operators Cab, E,', HI" 
and J,'. 
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The vcs construction, to be carried out in section 3, will be based on the property 
that g = osp( P / 2  N, R) has a five-dimensional Z-graded structure (Bars and  Gunaydin 
1979) with respect to its maximal compact even subalgebra so( P ) O u (  N ) :  

g = g - , o g - , o g , o g , o g z  (2.13) 

where 

g-, = span{ D"}  g- ,  = span{F', G"',Ja'} g,= s o ( P ) O u ( N )  

g1= s ~ a n { K , ,  H,"} g, = span{ D;}. 
(2.14) 

There does indeed exist an operator d?, belonging to the maximal-rank subalgebra go, 
such that 

p = -2 , .  . . , 2 .  [ U t  g,} = Pg, (2.15) 

In other words, the elements of osp( P / 2 N ,  R) belonging to various subspaces g, satisfy 
the supercommutation relations 

[g,, gcr} = & + U  p , f f = - 2  ) . . . )  2. (2.16) 

The Z-grading operator is 

(2.17) 

where from now on we assume that there is a summation over repeated covariant and  
contravariant indices. 

We observe that the Z gradation is consistent with the Z2 gradation defining the 
superalgebra since 

( 2 . 1 8 ~ )  

A" 

.I = E,' 

gt, = so( P) 0 sp(2N, R) = g-2 0 goo g, 

and  

gi = g- i @ g,  3 
(2.18 b )  

In particular, equation ( 2 . 1 8 ~ )  shows that the intermediate algebra of (2.12) has a 
three-dimensional Z-graded structure. 

We shall consider here those star irreps of osp( P / 2 N ,  R) (and also in section 7 
those grade star irreps of osp(2/2N, R)) which can be induced from a lowest-weight 
so( P ) O s p ( 2 N ,  R) irrep [E]O(R) or, equivalently, from a lowest-weight s o ( P ) O u (  N )  
irrep [E]@{R}. Here [SI, (0) and {R} are shorthand notations for [E,S2.. .EM],  
( R l R 2 . .  . 0,) and {O,nz. .  . Cl,,,}, where E,,. . . , z M ,  a,, . . . , a N  are some integers 
subject to the conditions E l  E>*.. .z E,,-, 2 ( E W J  or 5 ,  3 E2* . .  .a E M  ZOaccord- 
ing as P = 2 M  or P = 2 M + l ,  and R l * R 2 z . . . Z 0 N > N .  The s o ( P )  and u ( N )  
Hermitian irreps, [E] and  {R}, are finite dimensional, whereas the sp(2N, R) Hermitian 
positive discrete series irrep (R) (King and Wybourne 1985) is infinite dimensional. 
The osp( P / 2 N ,  R) irreps will be denoted by [Ea). Note that the irreps considered by 
Balantekin et a1 (1988, 1989) in their osp( 1/2N, R) and osp(2/2N, R) cs construction 
correspond to the case where R, = R 2  = . . . = 0 \ .  No such restriction will be made here. 

Let /[E]{R}a) denote basis states o f the  lowest-weight so (P)@u(  N)  irrep [S]@{n}. 
By definition, they are annihilated by the o s p ( P I 2  N, R) lowering generators belonging 
to g - ,og - , :  

F ' I [ Z ] { R } a )  = G'IJIE]{R}a) = Ja' l[S]{R}a)  = 0 (2.19a) 

D"[E]{R}a) = 0. (2.196) 

- 
c 
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Equation (2.196) actually follows from (A.5) and ( 2 . 1 9 ~ ) .  The lowest-weight state of 
[E]O{R} (and hence that of [Sa ) ) ,  

\ [ q { n } )  = 1[E]{R}lw) (2.20) 

satisfies, in addition, the relations 

A"'l[Z]{R}) = B"\[Z]{O}) = 0 

c,hl[zl{n}) = 0 a > b  

Caa~[s]{a}) = -SJ[S]{R}) 

E,'I[E]{R}) = 0 i>j 

(2.21) 

E,'/[SJ{R}) = firv+i-,I[EI{n}). 

The carrier space of [SO) can be constructed from {I[E]{R}ct)} by applying the 
osp( P /2N,  R) raising generators K , ,  I , , ,  H,", and D l  (Gunaydin 1988, Gunaydin and 
Hyun 1988). The Z and Z, gradations of the superalgebra naturally impart similar 
gradations on this vector space. The lowest-weight so( P ) O u (  N)  subspace, spanned 
by {I[S]{R}a)}, is also the lowest Z-grade subspace and will henceforth be referred 
to as the intrinsic subspace. Its Z grade is given by .tqmln = 1, R ,  and its Zz grade will 
be assumed to be G. 

We shall only consider here those irreps [Sa) whose carrier space is a graded 
Hilbert space or, in other words, can be endowed with a positive semi-definite, 
non-degenerate, Hermitian form, denoted by a bracket ( I) .  For physical applications, 
this is no essential limitation since one is mostly interested in such irreps. 

3. Vector coherent states of osp(P/ZN, R) 

The osp( P /2N,  R) vcs construction is based on the complex extension g' = g'-,Og'_, 0 
g',@gc,Og', of decomposition (2.13) (Rowe et ul 1988, Le Blanc and Rowe 1989, 
1990, Quesne 1990b). An arbitrary vector 2 belonging to g ' _ , O g '  , can be expanded 
as 

2 = iz,,D" + 0,F' + u,,Ga' + T,"J,' (3.1) 

where the second term on the right-hand side is missing for P = 2 M .  The complex 
(commuting) variables z,, = z,,, i ,  j = 1, . . . , N, and the complex (anticommuting) 
Grassmann variables O , ,  go,, T,', a = 1 , .  . . , M, i = 1, .  . . , N, parametrize the complex 
extension of the super coset space OSp( P/2N,  R)/[SO( P ) @ U (  NI]. The Grassmann 
variables are assumed to anticommute with all the odd generators and to commute 
with the even ones, whereas the ordinary variables commute with all the generators. 

(3.2) 

They are parametrized by the continuous variables z,,, e,, U",, T,", and by the discrete 
index cy labelling a basis of the intrinsic subspace, thence the alternative denomination 
of partially cs used elsewhere (Deenen and Quesne 1984a). In the special cases of 
osp(l /2N,  R) or osp(2/2N, R), and RI = .  . . = O N ,  the lowest-weight irrep of the stabil- 
i ty subalgebra U (  N )  or so(2)Ou(  N )  is one dimensional, so that the vcs (3.2) reduce 
to the standard cs considered by Balantekin et al (1988, 1989). 

The osp( P/2N,  R) vcs are then defined by 

Iz, e, U, r ;  a )  = exp(Z )l[Zl{a}a). 
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In the general case, the vcs  representation of an arbitrary state I*), belonging to 
the irrep [Sa) carrier space, is given by a function 9 ( z ,  8, U, 7 )  taking bector values 
in the intrinsic subspace. Its components 

(3.3) 

are holomorphic functions in the variables z,/ and polynomials in the Grassmann 
variables e,, a", and 7,'. 

The carrier space of the osp( P / 2  N, R) vcs representation is defined as the graded 
Hilbert space of all such vector-valued functions which are square integrable with 
respect to the vcs scalar product 

q,(q 8, U, 7 )  = ( z ,  8, U, 7 ,  CUI*) = ([zl{Q)aI e x p ( Z ) / W  

(9'lq),c5 = 1 / [*: ( 2 ,  8, U, 7 ) 1 * q a ( z ,  8, U, 7 )  do, e ( z ,  8, U, 7 )  (3.4) 
Q L I  

where the integration is carried out over both the ordinary and Grassmann variables 
(Berezin 1966) and du, ,(q 8, U, 7 )  is the vcs measure. The latter will not be explicitly 
determined in the present paper. We shall instead prove the existence of the scalar 
product (9'lY)\cs,  and therefore of the corresponding measure da,  ,(z, 8, U, T), by 
specifying an orthonormal basis with respect to this scalar product. Such a construction 
will be carried out by the K-matrix technique to be reviewed in the next sections. 

The vcs representation T ( X )  of an arbitrary operator X acting in the carrier space 
of [SO) is defined by 

[r(x)*\I'(Z, 0, U, 711, =I re, (x)q, (& 8, U, 7 )  
LI 

= ([S]{R}cul exp(Z)XI9) .  (3 .5)  
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X 

e x p ( Z ) X  e x p ( - Z ) = X +  1 (m!)- '[z,  [Z,. . . , [ Z , X ] .  . . ] I m .  (3.10) 

For X = F ' ,  for instance, a straightforward application of this equation leads to the 
formula 

m = l  

exp(Z)F '  = [ F ' +  OJD"] exp(Z).  (3.11) 

Here 

D" exp(Z) = VJ' e x p ( z )  (3.12) 

and F '  exp(Z)  can be found by applying (3.10) again, as follows: 

0 = exp(Z)d'  exp(-Z)  exp(Z)  = [a' - F'  -fO,DJ'] exp(Z).  (3.13) 

By combining (3.11) with (3.12) and (3.13), we finally obtain the result 

e x p ( Z ) F '  =[a '  +40JD"] exp(Z)  (3.14) 

leading to the expression of T ( F ' )  given in (3.8). 
The vcs representation of the Z-grading operator (2.17) is given by 

A A A  r(2) = x,,, + "1.1 + x0 + J+*v + J?T (3.15) 

where 
A 

(3.16) AA "c; = z,V" = o,al A ,  = (+,,aa' = T,aa,l 

are z, 0, U and 7-number operators, respectively. 

4. Orthonormal so(P)O u(N) vector Bargmann-Berezin basis 

To apply the K-matrix technique to the osp(P/2N, 52) irreps, we start by considering 
a vector Bargmann-Berezin (VBB) space. The latter is defined as the space of functions 
U( z, 8, U, T )  taking vector values U. ( z ,  8, U, 7 )  in the intrinsic subspace, and square 
integrable with respect to the Bargmann-Berezin ( B B )  scalar product 

(U'IU) =I [U:(& 8, U, T ) ] * * ~ ( &  8, U, 7 )  d p ( &  8, U, 7) (4.1) 
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where 

The various measures dp ,  appearing on the right-hand side of (4.2), are defined as 
Bargmann measures (Bargmann 1961) 

d p ( z )  = T- '  exp(-zz*) dz* dz 

d p ( 0 )  = exp(-Oe*) de* do  

or Berezin measures (Berezin 1966) 
(4.3) 

(4.4) 
according to whether their argument is an ordinary complex variable z or a Grassmann 
variable 8. In the integration over Grassmann variables in (4.1), the normalization is 
fixed by 

e d e =  d o * e * = i .  (4.5) j j  d e =  dO*=O I I  
Note that on the left-hand side of (4.1) (as well as on that of (3.4)), we use a round 
parenthesis notation to indicate that the scalar product is calculated in functional space 
with the BB measure (or the vcs measure). This is to be contrasted with the usual 
angular caret notation ('P'I'P), which represents the scalar product of two vectors 
belonging to the irrep carrier space. 

Equations (4.3) and (4.4) define the scalar product in the standard cs representations 
for boson and fermion Fock states, respectively (Glauber 1963a, b, Ohnuki and Kashiwa 
1978). In such representations, the boson (respectively, fermion) creation and annihila- 
tion operators are represented by z and d/az (respectively, 8 and a / a e ) .  Hence, in VBB 
space, the variables zlJ, e,, a,,, T , ~ ,  and the corresponding differential operators V", a', 
a"', a,' satisfy the adjoint relations 

(ZJ = v, ( e, ) A  = a' = a"' ( ~ , , ) ' = a , '  (4.6) 
with respect to the scalar product (4.1), in addition to the commutation and anticommu- 
tation relations 

[O", Zk,] = &'a,' + 8kJ8,' 

{a"', ab,}  = 8ba8J' 
{a ' ,  e,} = 8,' 

{aa' ,  T , ~ }  = ~ ~ ~ 8 , '  

with all remaining commutators or anticommutators vanishing. The set of states 

n,- = 0, 1, 2 , .  . . ni, nai, n; = 0, 1 

(4.7) 

(4.8) 

therefore form an orthonormal basis with respect to (4.1). 
Starting from the intrinsic subspace, the r representation of the operators K i ,  I,;, 

H;" and Db generates in the usual way an irreducible invariant subspace of the V B B  
space, which is by definition the vcs space. Although the domain of the operators 
T ( X )  is restricted to the latter, we can extend it  in a natural way to the whole VBB 
space. In the latter case, we shall speak of the extended r representation (Le Blanc 
and Rowe 1989, 1990). In the following, most equations will actually make use of this 
extended r representation, which will be denoted by the same symbol as the true vcs 
representation. It is, however, important to realize that, although the vcs representation 
is irreducible, its extension may be reducible, and even not fully reducible (see also 
section 5 ) .  



5392 C Quesne 

From (4.6), it follows that the r representation of so( P ) O u (  N )  is compatible with 
the BB scalar product, which means that, for X E s o ( P ) O u ( N ) ,  the adjoint T t ( X )  of 
T ( X )  with respect to this scalar product is T ( X ' ) ,  i.e. 

rt (Aib)  = r ( A a h )  
r'( cab) = r( cb") 

r'( B : )  = r( B " )  
r ( E , J )  = r ( q .  (4.9) 

In accordance with the r representation (3.15) of the grading operator, we define the 
Z grade of a basis state (4.8) by 

(4.10) X = N,,,,, + Nz + N o  + ,Ir,, + N ,  
where 

AAB = 1 n, 04",, = c H a ,  "IA- =E n,' (4.11) 

are the eigenvalues of the number operators kZ, J ? ~ ,  J?~, and J+,, respectively. Since 
the Z2 grade of the intrinsic subspace has been chosen to be 6, and Nz  is always even, 
consistency of the Z- and Z,-gradations requires the Z2 grade of a basis state (4.8) to 
be defined by 

(4.12) 
Hence, the even (odd) subspace of the VBB space is spanned by the basis states with 
an even (odd) number of Grassmann variables. 

In VBB space, it is now convenient to construct another orthonormal basis reducing 
the stability subalgebra s o ( P ) O u ( N ) .  For such purpose, we note that the variables 
e,, a,,, T," and zIJ transform under the latter in the same way as the generators K , ,  I , , ,  
H," and 0: belonging to g,  and g,, respectively. By using (3.8), we indeed obtain the 
following non-vanishing commutators: 

I at U ,  
N * = 2  c n,, 

ISJ 

A" 

% = ( Na + Nc + N 7 )  (m o d 2). 

[r(ALb), 7kc1 = - aocUbk + 66cFaA 

[ r ( B L ) ,  e k l  = 

[r(Cab), u c k l =  

[r( B : ) ,  T k ' ]  = -6,'ek 
c b  [r(Cab), T k ' 1  = -6, Tk 

b 

[ r (B") ,  ( + c k l  = a c ( l e k  

[ r ( A o b ) ,  a&] = a C a T k b  - acbT; 

[ r ( E ~ J ) ,  U c k l  = a i a c !  

[r(,y), T:] = 

[I-( B " ) ,  e,] = - rLa 

[~(EI'), e h ]  = a,'e, 
[ r ( E ~ ' ) ,  Z k l l  = a i Z j 1  + aiz,A 

which should be compared with (A.3) and (A.4). 
The variables z,, are therefore the components of a [0]O{20} irreducible tensor z, 

whose normalization is defined by that of its highest-weight component z ,  ,/a (here 
a dot over a numeral implies that this numeral is repeated as often as necessary). 
Whenever P Z 2, the Grassmann variables a",, 8, and 7,' transform irreducibly according 
to the irrep [10]0{10}, whereas, for P = 2 ,  al l  and 7,' are the components of two 
disconnected irreducible tensors, transforming according to [ 1]O{ 10) and [-l]O{ lo}, 
respectively. This is an additional reason for dealing with the P = 2 case separately in 
section 7.  For P Z 2 ,  we denote the [10]O{10} irreducible tensor by 5 and define its 
normalized highest-weight component as U ,  I if P 3 3 and 8' if P = 1. As a consequence 
of the adjoint relations (4.6) and (4.9), the differential operators transform con- 
tragradiently to the corresponding variables. In other words, for P # 2 ,  the operators 
V q  (d0',d',  a"') are the components of a [0]0{0-2)  ([10]0{0- 1)) irreducible tensor 
V(b),  whose lowest-weight component is V " / a  (a" if P 2 3  and a '  if P =  1).  

(4.13) 
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We may construct two sets of polynomials J'rl'L' ( z )  and Q;'A ' 'F i  (e), transforming 
as the components of tensors of ranks [ O ]  or [ A ]  = [ A , .  . . A,,] under s o ( P ) ,  and 
{v} = { v l  . . . v N }  or { p }  = {pl  . . . p \ }  under U( N ) .  Here p and y label the rows of 
[0]@{ v }  and [ A ] @ { p } ,  respectively, and  K distinguishes between independent Q 
polynomials with the same tensorial properties (no such label is needed for the P 
polynomials). Both sets of polynomials may be chosen orthonormal with respect to 
the BB scalar product (4.1): 

(4.14) 

The explicit form of the P polynomials is well known (Deenen and Quesne 1982, 

P ~ ~ ~ ~ " ~ ( z ) = . ~ ( { ~ } ) ( z l l ) ' ~ ~ - i ~ ~ ' ~ ( z l ~  1 2 ) 1 L 2 - L 3 '  ? .  . . ( Z I  , . I  \ )  ' ' \  ' (4.15) 

Le Blanc and  Rowe 1987). Their highest-weight component is given by 

where { v} is a partition into non-negative even integers, zI denotes the determinant 
of order r formed from the first r rows and r columns of the N x N matrix ~ ~ z , l ~ ~ ,  and 
A({  v}) is the normalization coefficient 

(4.16) 

For given P and N values, the irreps [ A ] O { p }  characterizing the Q polynomials 
can be listed very easily. We indeed observe that such irreps specify the tensorial 
properties of the Q polynomials under the s o ( P ) @ u ( N )  algebra spanned by the 
operators &ib ,  9331, eah, B", ,dah, and gl', defined in (3.9). For P > 1, the s o ( P )  algebra 
is contained in a u ( P )  algebra, generated by 

X O h  = U",dh' x: = u,,d' Xcl-h = U a , d h '  

X," = Ora"'  xoo = 6,d'  Xu-" = 6,a,' 

X-,h = 7," a h1 x-,O = 7,"a' X.,-h = T!,"dh' (4.17) 

where the operators X:, Xo",  X:, Xo-' and X-." are only present for P = 2 M  + 1. 
Such a U ( P )  algebra is complementary (Moshinsky and Quesne 1970, Howe 1979) 
with respect to the U( N )  algebra generated by gtf within an antisymmetric irrep { 1'0) 
of a larger u ( P N )  algebra. The latter is spanned by the operators 

X,,,h.I = U,,dbl X ~ , , ~ , I  = u,,af x, I - h , l  = u,,d,' 

X ~ , , ~ J  = e,d'J X",," I = Old' X" ,-"J = 0,a: (4.18) 

x - " , , ~ , ~  = 7,"ah1 x-,,," = T,'dJ x-,,,-~,' = T,"a,' 

where Xa,:qJ, Xo.,".', Xo,:,', XO,,-"*' and X_.,,".J only exist for P = 2M + 1. For any given 
value of 1 in the range 0, 1, . , . , PN, the allowed U( N )  and U( P )  irreps correspond to 
all conjugate partitions { k }  = {pl  . . . pI .  1 and { b }  = { k ,  . . . Lp}  of the integer 1. 

Hence, for P > 1, all possible { p }  irreps are determined by the conditions 

(4.19) 

while [ A ]  runs over all the s o ( P )  irreps contained in IC;}. Repeated [ A ]  irreps in a 
given {L} are then distinguished by an additional label (or set of additional labels) K .  
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Note that, for N = 1, { G }  being an antisymmetric irrep, no repetition can occur so that 
K is not needed. For P =  1 and arbitrary N, only fully antisymmetric { p }  irreps are 
allowed, so that condition (4.19) is replaced by 

p' = I** = . . . = p( = 1 (4.20) 

I n  such a case, K and [ A ]  are missing, of course. Various examples of explicit 
construction of Q polynomials will be given in 11. 

I t  is now straightforward to construct an orthonormal V B B  basis reducing the stability 
subalgebra by s o ( P ) O u (  N )  coupling of the intrinsic subspace orthonormal basis states 
I [ Z ] { f l } a )  with the two sets of orthonormal polynomials in z and 5 .  Such a basis is 
given by 

I [ Z ~ ) K [ A  l{p}i[51(~){ v } d h ) ) O  

p ( + ' =  . . . = p\ = 0 1 = 0 , 1 ,  . . . ,  N. 

- - [ p i 0 l i  I t ( t )  [ Q ~ [ * I ( P ) ( ~ )  i [ ~ ] { n } ) ] i [ E l { " t ] ~ [ ~ l ( h )  (4.21) 

where the square brackets denote s o ( P ) @ u (  N )  couplings, [ 5 ]  = [ 5 ,  . . . and { w }  = 
{ w ,  . . . w h } ,  { h }  = { h ,  . . . h N }  characterize s o ( P )  and U (  N )  irreps, respectively; x labels 
a [ 5 ] @ { h }  basis, and i, p distinguish between repeated [ 5 3 @ { w }  and [ ( ] @ { h }  irreps 
in ([~]O{fl})O([A]@{p}) and ( [ ~ ] @ { w } ) O ( [ O ] O { v } ) ,  respectively. Note that in the 
present series of papers all couplings are assumed to be ordered sequentially from 
right to left and that on the left-hand side of (4.21), the u ( N )  irrep symbol { U }  has 
been replaced by an sp(2N, R) irrep symbol ( w ) .  The reason for this change will become 
clear in the next section. From (4.14) and (4.12), it results that the states (4.21) are 
orthonormal: 

( [~ .n )K' [h ' l {p ' } i ' [5 ' l (w ' ) {  v ' } p ' { h f } X ' I [ ~ : n ? K [ ~ l { p } i [ 5 I ( ~ ) { ~ } ~ { ~ } x )  

(4.22) - 
- ' K  .,'[A l.[Al'(w } . { P I ' S  3i'[Cl,[tl'~u ) , ( w ) ' { u  ~ , { V ) ' P  ,p ' {h  I,ihl'% .A 

and that their Z2 grade is given by 

Z ( { w ) )  = [E (0, - Cl , ) ]  (mod 2). (4.23) 

5. K-matrix theory of osp(PIZN, R) 

It is obvious from (3.8) and (4.6) that the osp(P/2N,R) vcs representation r is not 
a star representation with respect to the B B  scalar product, although it may have such 
a property with respect to the unknown vcs scalar product. If we were to work with 
the latter and the representation r, we would have to convert the orthonormal VBB 
basis, defined in (4.211, into an orthonormal vcs basis through some transformation 
K. It will, however, prove more convenient to keep working with the very simple BB 
scalar product and the orthonormal V B B  basis (4.21) and instead transform the vcs 
representation into an equivalent representation y, satisfying the star conditions with 
respect to such a scalar product. 

Assuming for the time being that K does not map any linear combination of VBB 
basis states onto the null vector so that K - '  is well defined, y is then given by 

y(x) = P r ( x ) K  (5.1) 
and satisfies the condition 

Y(x-) = Y7(X) 
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(5.3) 
Here X denotes any osp( P /2N,  R) generator, and y A  the adjoint of y with respect to 
the B B  scalar product. 

From (4.9), it follows that the vcs representation r is Hermitian on restriction to 
s o ( P ) O u ( N ) .  Hence, K may be chosen so that the vcs and V B B  representations of 
the stability subalgebra are identical: 

r(A,b) = Y ( A a h )  T(Aab)  = y ( A a b )  UB,)  = Y ( B 2  

r (w) = y ( ~ u )  U G b )  = Y ( C )  w,’) = Y w ) .  
(5.4) 

The K matrix is therefore diagonal in the s o ( P ) O u ( N )  representation labels [(I, { h } ,  
and independent of X :  

([-‘njK’[h’l{Pr}5’[5‘I(W’){ v’>p’lh’}X‘lKI[-‘njK[h I { P ~ c [ 5 l ( w > { ~ l P { ~ ~ X )  
- - a[< ] , [ < ] a { h  ) , ( h l S ~  ,,([-‘;n)K’[A’1{P’}5’[51(w‘){’’}p‘{h}[K 

x IIan)K[~l{PcL)5[5l(w)op(h)). (5.5) 
Since, in physical applications, one is interested in the chain (2.12), and the 

construction of orthonormal sp(ZN, R) = U (  N )  bases was extensively studied elsewhere 
(Rowe 1984, Rowe et al 1984, 1985b, Deenen and Quesne 1984b, 1985, Hecht 1987), 
it is convenient to require the K operator to give vcs basis states reducing (2.12), 
hence classified by the following labels: 

osp(P/2N,R) = so(P)Osp(2N,R)  = s o ( P ) O u ( N )  

K[AI{P . ) l  151 (U) { v ) P  [51 { h }  
(5.6)  

where ( U ) ,  in particular, characterizes an sp(2N, R) irrep. We may therefore restrict 
ourselves to the construction of an orthonormal vcs basis of lowest-weight so( P) 0 
u ( N )  irrep states 

K I f [ 5 1 ( w ) { 6 } { 4 x )  ( 5 . 7 )  
where from now on we drop the osp(P/2N,R)  labels [XI) and denote by t the set 
of labels ~ [ A ] { p } l ,  taking T ( [ 5 ] { w } )  values. 

By definition, the functions ( 5 . 7 )  are annihilated by the operators T ( D ” ) .  From 
(3.8), it follows that they are independent of the variables z,,. Hence they may be 
expanded into r-independent V B B  basis functions 

(5.8) l t [5] (w){6}{w}~)  = [Q“‘*l ‘”’ (5)  x ~[-’]{n})]yI‘”’. 

This implies that 

(f‘[51(”>{ y’)p’{w)lK I f[51(w){b}{w)) = 4, , , b , 6 { v  ),(0)(3u[51{w})), , (5.9) 
where X ( [ 5 ] { w } )  is a submatrix of the full K matrix, whose row and column indices 
are t i =  ~ ’ [ A ’ ] { p ’ } l ’  and f = ~ [ A ] { p } 5 ,  respectively. Without loss of generality, 
3%([[]{w}) may be normalized in such a way that ? l ( [E]{a})  = 1. 

From (5.31, K satisfies the following relation 

( t ’ [  5% w ’ H O H  w ’1 I1 K K  TA ( 2 1 I1 r [ &I( w HO}{ w l 
= (1’[5’1(w’){o){w’}iir(3 ) K K  i i t [ 5 1 ( ~ i { o } { ~ ) )  (5.10) 
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where the matrix elements are reduced with respect to the stability subalgebra so( P)O 
U( N ) ,  3 denotes the [ 1010  {0 - 1) irreducible tensor whose lowest-weight component 
is G” if P a 3  and F ’  if P = 1, and >L = *@ the contragradient [10]O{10} irreducible 
tensor whose highest-weight component is G;, = i I , ,  if P 2 3 and F :  = I K l  if P = 1. 
As in Rowe et a1 (1988), it can be easily shown that equation (5.10) leads for the 
product matrix X X t (  [ 5]{w}) = Yt([ []{w})Yt”( [ 5]{ w } )  to the following recursion 
relation: 

C (xX+([tfI{w’})) i (~ [5 ’ I (w ’ ) {O} {w f } I I [ r i o ’ (3 ) I - I I  t[5I(w){O}{w}) 
i 

= * c I( ~’[5’ l (w’){0}{w’} I l r i0)(@) I/ r[51(w){OI{wH 
i 

x ( t ” [ 5 ’ ~ ~ ~ ‘ ’ ) ~ 2 0 ~ ~ w ’ ~ l I ~ ‘ ’ ’ ~ @ ) l l  t[51(w){O}Iw})>(~tYtt([51{w})) if. (5.1 1) 

Here D’ denotes the [O]O{20} irreducible tensor whose highest-weight component is 
D : J f i ,  r “ ’ ( X )  is the z- and V-independent component of T(X), and T“’(X) its 
component linear in z and independent of V. 

As a consequence of the so( P)Ou( N )  tensorial properties of [rl‘O)(S)]T, ria'(@) 
and r“)(@), the only non-vanishing values of their reduced matrix elements correspond 
to 

[ E +  A“)(a)l ,  [5 - A“’(a)l  if P = 2 M , o r  if P = 2 M + 1  and 5,,,,=0 
if P = 2 M + 1  and tM > O  +A“’(a)l, [ 5 - A Y 4 I 9  [51 [5’1= { [[ 

( 5 . 1 2 ~ )  

and 

{ w ’ } = { w + A ‘ ’ ) ( i ) } .  (5.12b) 

Here a (respectively, i)  may run over 1 , .  . . , M (respectively, 1 , .  . . , N ) ,  and A“’(a)  
(respectively, A “ ’ ( i ) )  denotes a row vector of dimension M (respectively, N )  with 
vanishing entries everywhere except for the component a (respectively, i), which has 
value unity, and only standard symbols for so( P )  (respectively, U (  N ) )  irreps have to 
be kept on the right-hand side of ( 5 . 1 2 ~ )  (respectively, (5.12b)). On the other hand, 
the u ( N )  irreps { w ” }  appearing in the summation on the right-hand side of (5.11) are 
given by 

{ w ”} = { w - A‘ ’ ’ ( j ) } (5.13) 

where j may run over 1 , .  . . , N. 
By using s o ( P ) O u ( N )  tensor calculus, it will be shown in section 6 and in I1 that 

all the reduced matrix elements appearing in (5.11) can be obtained from those of the 
irreducible tensor 5 introduced in section 4, 

( K I A  ’ I b ’ }  Ileil K [ A  I{P}) = ( K ’ [ A  ’ I b ’ }  1 1  Q[’01ilo’(5) 1 1  K [ A  I{P}). (5.14) 

Hence, provided the polynomials Q”yA1ipJ(s) can be constructed and all required so( P )  
and u ( N )  Racah coefficients are known, the recursion relation (5.11) can be written 
down in explicit form and solved by starting from the initial value XYt’([E]{n}) = 1. 



Vector coherent state theory of osp(P/ZN, R) I 5397 

At this point, a choice can be made between the two possible signs in (2.9), (2.10) 
and (5 .1  1 )  by imposing the requirement that Xrt“([5]{0}) be a positive definite matrix 
for all the so( P ) O u (  N )  irreps [ 5 ] @ { w }  encountered in the VBB basis z-independent 
subset (5.8) (recall that u p  to now K is assumed to be non-singular). In  all the cases 
studied in 11, it will turn out that the lower sign is ruled out by this condition and  
that, for the upper sign, some relations between the osp( P /2N,  W )  irrep labels 
c1,. . . , iM, a,, . . . , CIN have to be satisfied whenever P>  1. Hence, K-matrix theory 
provides us with a simple tool for determining whether or not a given positive discrete 
series irrep of osp( P / 2  N, R) is equivalent to a star representation. 

Restricting ourselves now to the irreps equivalent to star representations, we can 
determine the matrices X ( [ 5 ] { w } )  and X - ’ ( [ 5 ] { 0 } )  by converting the T x T matrix 
XX‘([5]{w})  to diagonal form D ( [ 5 ] { w } )  via a unitary matrix U([~]{W)): 

(5 .15 )  

with dr([5]{w})>0 for r =  1 , .  . . , T(Hecht 1987, Hecht and Chen 1990). In (5 .15 ) ,  for 
the sake of brevity, we have dropped all the dependence on the irrep labels [ 5 ] { w } .  
From (5 .15) ,  we obtain 

Yt,, = ( d r ) ’  ’ U ,  (x-)rt = (dr)’”urr (5.16) 

3 - 

UX7l‘ U’ = D = diag( d, , d, , . . . , d T )  

and 

= (dr)-”*Urf ( = ( d, ) - ’ ’2  U,. (5.17) 

The eigenstates of ?lXL([5]{w}) may be labelled by index r and written as 

I~[5l(w){oHw}x) = c l t [ 5 l ( w ) { o l { 4 x ) (  U l w  (5.18) 

When acting on the members of this new orthonormal set, the operators K and K-’  
are simply given by 

(5.19) 

f 

K I r [  11(w){oHw >x) = (4  1 ’ 2 1  r[51(4{mfJ lx) 
and 

(r[Sl(~){o}{4xlK - I  = (r[51(w){o}{w}xl(d,)-’/2. (5.20) 

It is now straightforward to calculate the s o ( P ) O u (  N )  reduced matrix elements 
of the odd  generators between two lowest-weight so( P ) O u (  N )  irrep basis states in 
VBB space, i.e. by using the y representation. Since the odd  lowering generators commute 
with the sp(2 N, W )  lowering generators D’, they can only lower states of a lowest-weight 
s o ( P ) O u ( N )  irrep to other states of the same kind. Hence, taking the so (P)@u(  N )  
reduced matrix elements of (5.11, for X = 3, between two orthonormal states (5 .18 ) ,  
we obtain 

(r’[5’l(w”{wf} 1 1 ~ ( [ 5 ‘ 1 { ~ ’ } )  r(2) II r [ 5 1 ( w ) { w J H  
= (~’[“”{w‘l II r‘O’(3 )X‘([51{w 1) II r [51 (4{0Hw 1). (5.21) 

Combining this result with the adjoint of (6.2a),  to be derived below, leads to the relation 

( r’[  [’I( w ’){bHw 7 I1 7 ( 3 ) I /  51(w )m w 1 ) 
= ( ~ ‘ [ 5 ’ l ( ~ ’ ) ~ o ~ ~ ~ ’ ~ l l ~ - ’ ( [ 5 ’ 1 ~ ~ ’ ~ ~ ~ ~ ( [ 5 l ~ ~ ~ ~ I l  r[51(4{01{w}) 

= c (X-’(r”’}))r f (t’[5’l(w’){o}{wr}Ilbll t [ 5 l ( w ) { o b J H  
If 

( 5 . 2 2 )  
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By taking the adjoint of (5.22), the reduced matrix elements of y ( @ )  can also be 
obtained as 

( ~ ’ [ 5 ’ l ( ~ ‘ ) { o ) { w ’ l l /  r(@) II r [ 5 1 ( ~ ) { W J ) )  

= * ( ~ ’ [ 5 ’ l ( ~ ’ ) ~ o ~ ~ ~ ’ ~ l l X ’ ( [ 5 ‘ l ~ ~ ’ ~ ~ ~ ~ ~ ~ - ( ~ 5 1 ~ ~ ~ ~ ~ - 1  II r[51(w){0}{4) 

= * c ( Yt+( [ 5’1 I w ‘I 1 r I ( t ’ [  [’I( w ’){OH ‘> / I  5 II t [ 51(w ){OH w I ) 
f l  

x ( ( 3 f ” ( [ 5 1 { w H - ’ ) l r  (5.23) 

where the i sign corresponds to the rt sign in (2.9), (2.10) and (5 .11 ) .  
The matrices Yt, Yt&, 3l-I and (Yl-)-’, appearing in (5.22) and (5.23), are given by 

(5.16) and (5.17). Hence, the matrix representation y ( S ) ,  y ( @ )  can finally be expressed 
in terms of the known reduced matrix elements of 5 ,  defined in (5.14), by using the 
relations 

( t’[ “ ” { w ’ )  115 II t [  51(4{01{4) 
= U([Zl[A 1[5”1; [515[A’l5‘) ~ ( { W - 4 b J f 1 { 1 0 } ;  {wIt{tc‘}i’)  

x ( K ’ [ ~ ’ I ~ C L ’ I I I ~ I I K [ ~ l I C L ~ )  (5.24) 

and 

( ~ ’ [ 5 ’ 1 ( ~ ’ ) ~ 0 ~ ~ ~ ’ ~ l i ~ l l  t[5I(w){0){4) 

1 L ( [ 5  l l - ~ c [ l o l , - ~ r [ ~ l ! + * ~ i ~  ~ i + * C c ~ l O ~ ! - ‘ p C { w ~ !  ( dim[ 51 dim{w} ) I ”  
= (-  1 )  

dim[ 5’3 dim{ w ’} 

x ( t [  51(w ){bHw 1 / I  5 / I  t ’ [  5’1(w ” { w  ’I ). (5.25) 

Here the U coefficients are so( P )  or U (  N )  Racah coefficients in unitary form (Hecht 
et al 1981, 1987), dim[[] and dim{w} denote the dimensions of the s o ( P )  and u ( N )  
irreps [[I and { U } ,  respectively; c p ( { w } )  is a u ( N )  phase defined by 

cp( {w) )  = t ( N  + 1 - 2 i ) q  
I 

(5.26) 

and $([[I) is a similar so (P)  phase to be defined in 11.  
With the functions belonging to VBB space we can associate vectors belonging to 

the irrep carrier space. By replacing in the polynomials PplCv) and Q”y”l{p t ,  the variables 
z and 5 by the operators D’ and 6, which have the same so( P ) O u (  N )  transformation 
propenies, we indeed convert the VBB basis functions (4.21) and (5.8) into the state 
vectors 

l[=vK [ A  I{CL )5[51{wH V I P {  h Ix) 
(5.27) - - [p[o]{”’(D’) x [ Q K [ ^ ] { & ) ( @ )  x I [ 21 { Q } ) ] i [ c: I i w ’1 ; [ E I i ’1 i 

and 

l t [ 5 ] { w } { O } { w } , y )  = [Q“[”l‘”’(@) x ~[E]{fL})]~[‘liu’ (5.28a) 

where we now use the usual Hilbert space notation with angular carets. Such state 
vectors are not characterized by a definite sp(2N,R) irrep (note that the V B B  basis 
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functions (4.21) and (5.8) have a similar property and only become characterized by 
a definite ( U )  after acting with the operator K ) .  To stress this point, we use the notation 
{ U }  instead of ( w )  within the kets on the left-hand side of (5.27) and ( 5 . 2 8 ~ ) .  

State vectors 

I t [ 5 1 ( 4 { O h J ) x )  (5.28 b )  

specified by a definite sp(2N, R) irrep ( U ) ,  and of lowest so( P ) O u (  N )  weight, could 
be constructed by combining (5.280) with some states (5.27) with { v} # {O}. Contrary 
to the VBB basis functions (5.8), they form a non-orthonormal set. The matrix 
~Y?L?([~]{U}) can be interpreted as their overlap matrix (Deenen and Quesne 1985, 
Hecht 1987, Hecht and Chen 1990): 

( t ’[ 5 1 ( H 01 { ) x  I t [ 5 1 ( ) {O} { )x ) = ( x%-+ ( [ 51 { 1 1 ) r ,  f ‘ (5.29) 

The K-matrix technique main advantages consist in avoiding both the states (5.28b) 
painful construction and the overlap matrix (5.29) difficult evaluation, and in replacing 
them by the recursion relation (5.11) resolution. 

A Hilbert space orthonormal basis, corresponding to the VBB orthonormal basis 
(5.18), is then given by 

l r [ 5 1 ( 4 ) { w I x )  = c (5.30) 

Since the reduced matrix elements of 3 and @ are representation independent, they 
are given by 

(5.31) 

and 

(r’[5’l(w’){O}{w’}ll411 r [ 5 1 ( 4 { 0 ) { 4 )  

= (r‘[5’l(w’){OhJ‘}Il r(6) l l r [ 5 1 ( 4 { O H 4 )  (5.32) 

in terms of the VBB space matrix elements (5.22) and (5.23). 
So far we have assumed that K does not map any linear combination of VBB basis 

states onto the null vector, or, in other words, that the vcs space is not a proper 
subspace of the VBB space. Stated differently, this means that all the states (5.28b) are 
linearly independent. This case occurs whenever the osp( P / 2 N ,  R) irrep is typical, i.e. 
cannot be embedded into an indecomposable representation (Scheunert 1979). Such 
irreps exhaust all the possibilities for the osp(l /2N,  R) superalgebras. However, the 
remaining osp( P/2 N, R) superalgebras may also have atypical irreps, i.e. irreps which 
can be embedded into reducible, but not fully reducible representations. Then the vcs 
space is a proper subspace of the V B B  space and the extended r representation is 
indecomposable although the vcs representation itself is irreducible (Le Blanc and 
Rowe 1989, 1990). 

For atypical irreps, some of the VBB basis functions (5.8) or of the Hilbert space 
basis vectors (5.286) are redundant. Hence, at least for one combination of irrep labels 
[ 5 ] { w } ,  the overlap matrix ?‘Xi([5]{w}) of (5.29) has some zero eigenvalues, immedi- 
ately signalling the presence of forbidden states. The allowed states can be designated 
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by the index r = 1, .  . . ,R, corresponding to the non-vanishing eigenvalues d,  (Hecht 
1987, Hecht and Chen 1990). Equation (5.15) now takes the form 

UYlYl' U -  = D = diag(d, , d 2 ,  . . . , d R ,  0, . . . , 0) (5.33) 

where, on the right-hand side, there are T - R zeros. For allowed states corresponding 
to d ,  # 0, equations (5.16)-(5.20) remain valid, but now all matrices are rectangular 
and Yl-' is only the left inverse of Yl. These changes do  not substantially alter the 
results derived in the first part of the present section, which may still be applied 
provided redundant states are consistently eliminated. 

In particular, K-matrix theory remains valid so that the T x T matrices YlYl'([5]{w}) 
can still be obtained by solving the recursion relation (5.11) instead of having to be 
computed as overlap matrices. By imposing that they are positive semi-definite for all 
the s o ( P ) O u ( N )  irreps [ 5 ] O { w }  encountered in the V B B  basis subset (5.8), a choice 
can be made between the two possible signs in (2.9), (2.10) and (5.11). This leads to 
the same result as before, namely that in all the examples considered in 11, only the 
upper sign is allowed. 

Once the positive semi-definite matrices YIYlt([ 5]{w}) are known, simple and 
systematic procedures are available for determining the atypicality conditions and the 
branching rule for the reduction of the osp(P/2N, R) irrep [Sa) into irreps of its 
subalgebra so( P)Osp(2N,  R), and for identifying the orthonormal basis states (5.18) 
and (5.30). To solve the first two problems, it is enough to determine the rank of the 
matrices. At least in principle, this can be done in closed, analytic form. On the contrary, 
to solve the third problem, numerical computation is required whenever R > 3. 

Finally, from the s o ( P ) O u ( N )  reduced matrix elements of the odd generators 
between two lowest-weight so( P ) O u (  N)  irrep basis states, given in (5.22), (5.23), 
(5.31) and (5.32), it is possible to calculate their so(P)Osp(2N, R) (triple) reduced 
matrix elements by applying the Wigner-Eckart theorem with respect to sp(2N, R) 2 
U( N). Since the odd generators transform under a finite-dimensional non-unitary irrep 
of sp(2N, R), we have to use sp(2N, R) Wigner coefficients coupling a positive discrete 
series unitary irrep to a non-unitary one to give another positive discrete series unitary 
irrep. As far as the author knows, such Wigner coefficients are known in explicit form 
only for sp(2, R)-su(1, 1) (Ui 1968), so that we shall now restrict ourselves to the 
osp( P/2,  R) superalgebras. 

In such a case, index i only takes the value 1, and may be dropped. In the V B B  
basis states (4.21), the U(  1) irreps { p }  and { v} provide redundant labels since I* = o -0 
and v = h - w,  and hence they may also be dropped; moreover the labels K and p are 
not necessary. The states may therefore be written as ( [ A l l [  5 ] ( w ) {  h},y). 

The sp(2, R) generators being D-,  D and E, the corresponding su( 1, 1) generators 
are K ,  = fD', K -  = f D  and K O  = ;E. According to Ui (1968), an irreducible tensor T i  
of rank k and components q = k,  k - 1 , .  . . , - k with respect to su( 1, 1) is defined by 
the commutation relations 

[ K , ,  T t ]  = F [ ( k  q)(k  * q + l ) ] "2Tt* l .  (5.34) 

The operator T i  also transforms under the sp(2, R) irrep (2k) and the u(1) irrep {2q}. 
From (A.4), it follows that the pairs of odd generators (Za, J a ) ,  ( K ,  F )  and (H", G") 
are the components f ,  -; ({l}, I-1)) of an irreducible tensor of rank f ((1)) with 
respect to su( 1, 1) (sp(2, R)). Hence, the so( P)O u (  1) irreducible tensors Sj and ,? form 
a single so( P)@sp(2, R) irreducible tensor 2, transforming under the irrep [lo]@( 1). 
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6. Evaluation of so(P)Ou(N)  reduced matrix elements of T'O'(X) and T"'(X) 

The power of K-matrix theory relies on the possibility of evaluating the so( P ) O u (  N)  
reduced matrix elements of the irreducible tensors [r")(3)]', r'"(@), r")(@), r to)(Dt)  
and  r")(Dt) in terms of those of 5 .  In the present section, we shall outline the calculation 
procedure to be followed in the detailed examples of 11. 

From (3.8), it follows that the components of the relevant irreducible tensors are 
given in explicit form by 

[r'"( GO')]. = aa, [ I - [ ~ ~ ( F ) ] -  = e, = T,a ( 6 . 1 ~ )  

r lag)  = .r,b (A  ha + $&ha ) - e, (B; + $3; ) - ahl (c  a b  + f vab ) + ( [ E , ~  + f s,' ) 
r t o ) ( K , ) =  7 , a ( ~ ~ + f ~ ~ ) - a a l ( ~ a + f ~ 0 ) + e , ( ~ l ~ + f s , ~ ) ,  (6.lb) 

r'O'(H,") = TIh(@)," + $ % h a )  + e,@" +$Bo)  + C7bt(Aoh +$dah)+ TIa([EIJ -ti%,') 
( 6 . 1 ~ )  
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where 

.A = i [ - 2 C ( S O ( P ) )  + % ( s o ( P ) )  + 2Ci0'(U( N ) )  
- e( U (  N))  + ( P - N - 1 )(  & + & + "CJ] (6.3) 

. i ' = f [ C ( u ( N ) )  - c i = ' ( u ( N ) ) ]  (6.4) 
are linear combinations of the operators (3.16) and of the s o ( P )  and u ( N )  Casimir 
operators 

and 

c ( s o ( p ) )  = t [y(Abb)y(AQb)  + Y(AQb)y(A,b)l 

(6.5) 

In coupled tensor form, equation ( 6 . 1 ~ )  is 

( - 1 ) " - ' n 7 i [ P ' 2 0 ' ( z )  x Q{o-lyb)]{lo1 i f P = l  
( E )  if P 3 3  (6.6) 

( z ) = z  as follows from (4.15) and (4.16). In the case where 
P = 1, Q'""'(b) = b is the (0- l}  irreducible tensor which is the adjoint of Q ' " ' ( 5 )  = 5 

and whose lowest-weight component is 

@:-It(a) = 2. (6.7) 
In the case where P S  3, Qrlol 'o-lt(b) = b  is the [10]0{0-  l }  irreducible tensor which 
is the adjoint of Q['01(lo1(5) = 5 and whose lowest-weight component is 

(6.8) 
and u p  denotes the so(P)-dependent phase factor defined by 

(6.9) 
To prove (6.6) for P = 1 (respectively, P S  3), it is enough to compare the term 
proportional to zl  Id1  (respectively, z l , d l l )  on both sides for the highest-weight com- 
ponent T ( I ' ( K , )  (respectively, T ( l ) ( I l l ) ) ,  by making use of the U (  N )  Wigner coefficients 
calculated by Biedenharn and Louck (1968). In  the following, we shall use the 
expression of rill(@) valid for P 3 3  also in the case where P = 1 by setting u1 = 1. 

As shown in (6 . ld ) ,  r" ' (D- )  contains two terms. The first one, which only differs 
from zero for P > 1, is obtained by so( P )  coupling the intrinsic so( P)  generators with 
second-degree polynomials in 5 ,  transforming under the U (  N )  irrep {20}. The intrinsic 
generators being the components of an irreducible tensor for P = 3, of two 
irreducible tensors and for P = 4, and of an irreducible tensor U[l'O1{O) 

for P a  5, we can write r;O)(D-) as 

Q [ l o l { o - l ~  [ l O l { l O I  @) I  h - 1 J m  [p[o lc2o)  U p ( - l )  { p1'(sj) = 

where p(lo)( = P[ol{20)  

Q y l  ;;-I t ( b )  = d l  1 

Q h u  lu ( b )  = u,a,'. [ I O 1  (0-1 t 

0 i f P = l  
if P = 3  ~ [ l l { O )  lOIt.?Ot 1 u3 [  Q[l l i ro l  

u , { [ ~ [ l l l i ~ o t ( 5 )  (6.10) ~ [ I l l I O t  [ O l i 2 o t  1 

~ [ I ~ O l ' O i  [ O l ' X )  1 
if P = 4  

if Pa5 

~ [ l - l l ' o l  [01{20i 1 1  + [ Q [ ' - I I i 2 0 )  

Q [ 1 W 2 0 )  
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where up is some P-dependent coefficient. Explicit expressions for U and u p  will be 
given in I1 for various values of P. 

The second term of T‘O’(D’), which only differs from zero for N > 1, is obtained 
by u ( N )  coupling the U (  N)  generators E,’ + g,’ with second-degree polynomials in 5, 

transforming under the U( N )  irrep { 120}. Apart from a scalar which does not contribute 
here, the former are the components of an irreducible tensor T[olllo-ll , whose highest- 
weight component is defined by 

(6.1 1) 

The latter are the polynomials Q[01i1’0)(5), whose highest-weight component is 

~ [ ~ I ( l ’ ~ } ( 5 )  h w  = W ~ P - I  2 ( e 1 e 2 + ~ a l T 2 a +  T 1 ~ U a 2 )  (6.12) 

where wp is a P-dependent phase factor to be defined in 11. Hence, Ty’ (D‘ )  can be 
written as 

r;o)(DA) = - w p [ p ( ~ -  1 ) 1 1 / 2 [ ~ [ o l ( I ’ o ’ ( ~ )  ~ [ o l i ~ o - ~ i  I .  [01t20) (6.13) 

This relation can be proved by comparing the term proportional to (e1 O N  + a, I ~ N a  + 
.~,“u,~)(E, + g I N )  on both sides for the highest-weight component r:”( Di1)/v% 

From (6.2), (6.6), (6.10) and (6.13), it is now easy to express the reduced matrix 
elements of the various irreducible tensors in terms of those of 5.  Equation (6.2) leads 
directly to the results 

(6.14) 

(6.15) 

(6.16) 

and 

Ai‘({ v}, { w } )  = 4 1 [ w , ( w ,  + N - 2 i  + 1) - vI(  v, + N - 2 i  + 111 (6.18) 



5404 C Quesne 

are the eigenvalues, corresponding to the state (4.21), of the operators A and A‘, defined 
in (6.3) and (6.4), respectively. When use is made of (5.12b), (5.13), and of the relation 
(Le Blanc and Rowe 1987) 

( r ’,[ 5’1 ( w ”) { 20) { 0 ’1 11 z I( t ”[ 5’1 ( w ”)( 0 )  { w ”} ) = ( { 20} / I  z I I { 0 }  ) = 1 (6.19) 

equation (6.16) takes the much simpler form 

(r”[~‘”w”){20}{w’}~~~‘’’(~”)~~r~’[~‘](w”){0}{w”}) = w ,  +U, - i - j .  (6.20) 

By applying the Wigner-Eckart theorem with respect to s o ( P ) O u (  N ) ,  the reduced 
matrix element of r(”(Q), as given in (6.6), can be written as 

( t” [5’1~”~){20}{w’} i i r ‘ ’ ’ (4)11 m i ( w ) 1 0 ~ 4 )  

= u p  ( - 1 ) - ‘m U ({ w }{ 0 - 1 }{ w ‘}{ 20) ; { w ”}{ lo} ) 

x (~”[5’”0~“’’~ll~ll  f [51(4{6}{4)  (6.21) 

where, on the right-hand side, the U (  N )  Racah coefficient can be calculated from (A.9) 
of Le Blanc and Hecht (1987) by using some symmetry properties of Racah coefficients 
(Hecht er al 1981), and the reduced matrix element of b is given in (5.25). 

By proceeding in the same way, the reduced matrix element of r$’’(D’),  defined 
in (6.13), can be expressed as 

(t’[5‘1(w’){0}{w’}iir:”‘(o:) II rf’[5’1(w”){0}{wf‘}) 

= - w p [ P ( N -  l)]”*U({l20}{10- l}{w”{w”}; {20}{w”}(p = 1 ) )  

x (r’[ ~‘](w’){0}{w’}ll Q[””)(tr) / /  t”[ &’](”’){”{”’}) 

x (t”[~’](w”){0}{w”}/~ T[Ol{’O-l) / I  [’I 5” w ’” w”} 1. (6.22) 

Here the reduced matrix element of T[o”’o-’’ is given by (Louck and Biedenharn 1970) 

(6.23) ( t ” [ ~ ‘ ] ( ~ ” ) { O } { ~ f ’ } ~ ~  T[’~{’’-’~ 11 t ” [  5’](w”){0}{ w”)) = [fg({w”})]”2 

where 

The U (  N )  Racah coefficient, where p = 1 refers to the case where the {lo-’} irreducible 
tensor is made of the set of su( N )  generators, has been calculated elsewhere (Quesne 
1990c) and is equal to 

U({120}{10- l}{w”{w”}; {20}{w”}{p = 1)} 

= [ 2 ( ~ - l ) g ( { w “ } ) ] - ” ’ [ ( w ,  - w , + J - i ) ( w ,  -w,+j - i+2)]”’  (6.25) 

where { U ’ }  and { U ” }  are given by (5.126) and (5.13), respectively. Finally, by applying 
the Wigner-Eckart theorem with respect to U( N ) ,  the reduced matrix element of 
Q[01i’70)(tr) can be written as 

(r’[ 5‘](w’){O}{ w’} / /  Q[ol‘l’O)(tr) 11 r”[ 5’3(w”){O}{ w”}) 

= U (  {a}{ PI’}{ w ’}{ 1 ’O}; { w”}i”{ p ’}i’)( K ’[A ’I{ p ’} / I  Q[’li ‘‘O’ (4 1 / I  K ”[A ”I{ P ’7 1 
(6.26) 
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where the reduced matrix element on the right-hand side is expressible in terms of 
(5.14), and of so( P) and U (  N )  Racah coefficients. In  11, detailed expressions will be 
given for the reduced matrix element of rj"(D') for various P values. 

7. The case of osp(2/2N, 02) 

Whenever P = 2, there are essentially two modifications with respect to the general 
theory developed for the cases where P Z 2  in the previous sections: on one hand, 
osp(2/2N,R) may have grade star irreps, and on the other hand its odd raising (or 
lowering) generators do not transform irreducibly under the stability subalgebra so(2)O 
u ( N ) .  In the present section, we shall successively review the consequences of these 
two differences by starting with the latter. 

Since index a takes the single value 1, it may be dropped, so that the so(2) generator 
is denoted by C, and the odd raising (lowering) generators by Z, and H, (G' and J ' ) .  
From (A.3) and (A.4), it is clear that the operators I ,  and HI (G' and J ' )  are the 
components of two separate irreducible tensors Z and H ( C  and J ) ,  transforming 
under the s o ( 2 ) 0 u ( N )  irreps [l]O{lO} and [-1]O{lO} ([-l]O{O-l} and [13O 
{0-l}). In the N = 1 case, the odd generators form two separate so(2)Osp(2,R) 
irreducible tensors 4 = (I, J ) ,  and X = (H, G)  transforming under the irreps [ l]O( 1) 
and [ - l ]O( l ) ,  respectively. The same holds true for the Grassmann variables U, and 
T,  (and their corresponding differential operators a/ac+, and a/&,) ,  which are the 
components of two so(Z)Ou(N)  irreducible tensors U and 7 ( a / a a  and a / a ~ ) .  Such 
pairs of irreducible tensors replace the single irreducible tensors 4, 3, P, 5 and b, 
respectively. 

As a consequence, the Q polynomials, used in constructing the orthonormal VBB 

basis (4.21) reducing the stability subalgebra s o ( 2 ) O u ( N ) ,  are functions of the two 
irreducible tensors U and T. They may be denoted by (?[*]{;I( U, T), where the additional 
label K is not needed since no so(2) irrep [ A ]  is repeated within a given u(2) irrep 
{ b } .  Both equations (5.24) and (5.25) now split up into a set of two equations, wherein 
all so( P)-dependent factors disappear. 

Let us now review the star and grade star irreps of osp(2/2N,R). For such 
superalgebras, the adjoint operation in the subalgebra so(2)Osp(2N, R) can be exten- 
ded not only to the adjoint operation (2.9), (2.10), but also to the grade adjoint 
operation (Scheunert et a1 1977) 

(Z,)'=*G' (GI)'= Z, ( H, ); = 7 J '  ( J ' ) :  = * H,.  (7.1) 
Hence, in addition to y representations fulfilling the star conditions (5.21, there may 
also exist y representations satisfying the grade star conditions 

Y W * )  = Y7X) (7.2) 
where X denotes any osp(2/2 N, R) generator. Their matrix elements in V B B  space are 
such that 

(x ly(X ' ) l~)  = (y/y(X)ix)* (7.3) 

(xJy(x;)ly) = (-1) J i r i f ( X '  (YlY(X)lX)* (7.4) 

or 

respectively. Here 1x1 and ( y )  are any two V B B  basis states (4.21), %(x) the Z1 grade 
of 1x1 defined in (4.231, and 9 ( X )  the Z, grade of generator X. 
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Finally, the tensorial form of the operators r ( O ) ( X )  and r ( ' ) ( X ) ,  given in (6.2a), 
(6.2b), (6.6), (6.10) and (6.13) for P # 2, now becomes 

[rcO)( c)]' = [ r ( ' ) ( ~ ) ] -  = 7 (7.11) 

rco)(n = [A,  r(O'(H) = [A,  T] (7.12) 

rl 1 ) ( 1 )  = (-1)' - I J ~  [p[01(201(z) ~ [ l l i o - l i ( a / a ~ ) l [ l l i l o )  (7.13a) 

r(l)(H) = ( - l ) c - 1 ~ ~ [ p [ 0 1 ( 2 0 } ( z )  ~ [ - l l i o - l i  ( a / a ~ ) ] [ - ' ~ ' ' ~ '  (7.13b) 

r{ol(D-) = v 2 ~ ~ [ O I ( * O ~  (U, 7) (7.14) 

(7.15) 

while that of r " ' ( D A ) ,  given in ( 6 . 2 ~ )  for P f 2, remains unchanged. In (7.13), the 
irreducible tensors Q [ ' l ~ - ' ' ( a / a ~ )  and Q'- ' l~- ' ' (a /au)  are defined in such a way 
that their lowest-weight components are 

Q U I  'o-"(a/a I* T) = a l a r 1  Q[-"-"(a/au) = a / a a ,  (7.16) 

respectively. In deriving (7.14), we used the fact that the single intrinsic so(2) generator 
C may be replaced by its eigenvalue E. As a consequence of (7.11)-(7.13) and (7.15), 
each of the equations (6.14), (6.15) and (6.21) (where u 2 =  1)  splits up into a set of 
two equations, while equations (6.16) and (6.22) are still valid. 

r;o)(D-) = - w , [ 2 ( ~  - 1)l l  ~ [ Q [ O I ( ~ ' O } ( ~ ,  7) ~ [ O I { 1 o - 1 }  [ o I ( ~ i  1 

Appendix. Supercommutation relations of osp(P/ZN, R) 

In the present appendix, we list the non-vanishing commutators and anticommutators 
of the osp(2M + 1/2N, R) generators. Those of the osp(2M/2N, R) generators can be 
obtained from them by dropping the relations containing the operators E , ,  E", K ,  
and F'. 

The commutators of the even generators, i.e. the generators of the s o ( 2 M +  1)0 
sp(2N, R) subalgebra, are given by the relations 

[Cab, C,"] = G,hCad - SadC,h 

[Cab, Aid] = SChA,d - 6dhA,, [Cab, B,] = SCbB: 

[Aah, Aid] = - ScaCk + SChCdU + - S;Cca (A.1) 

[ B", A,,] = S,"E, - S,,"E; 

[B,,EL]=-Aab [ E " ,  E ; ]  = - ch" 

and 

as well as by those which can be derived from them by using the adjoint conditions 
(2.6) and (2.7). 
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The commutators of the even generators with the odd ones are 

[Cab, G"'] = - S,'Gb' [Cab, H , ' ]  = - 

[ Cahi I C , ]  = 6 c h I a ,  [ COh, .Ic'] = 6,hJa' 

[A:, , G"'] = - 6,'Jb' $. sRhJ,' 

[ B b ,  F ' ]  = J,' 

[AX,, H,"] = - 6,"IhI + a i l a ,  

[ B', , Gh']  = - aahF' 
(A.3) 

[ BL , Hlb]  = - aUhK, [ B i ,  K,1= I", 

[ B", F ' ]  = - G"' 

[ B", J h l ]  = 6b"F' 

[Aah,  I,,] = 6:Hlh - S,hH,u 

I b i l  = Sh"K, 

[B" ,  K , ]  = - H," 

[Aah, Jell= Se"Gb' - S,hGa' 

and 

[E,', F k ]  = - 6,kF' 

[DL,, Fk]=-6 iAK, -6JkK,  [Oil ,  G a k ]  = - SlkH; - 6JkHla (A.4) 

[E,', G a k ]  = - 6,'GUJ [ Eij, Hk,] = 6dH," 

' R k l  = [ E l ,  J O A ]  = - s,9: [ ElJ, Kk 1 = V K ,  

[ o;, J R k ]  = - 6,kIaj - 6,9", 

[Oil, I R k ]  = SklJ,J + S,'J,' 

[ D", HA"]  = 6,""' + 6,'G"' 

[ D", K k ]  = 6,'FJ+ SdF' .  

Finally, the acticommutators of the odd generators are given by 
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